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A previously unpublished theory for describing the internal flow in a gas centrifuge 
is presented. The theory is based on boundary-layer-type arguments on the side walls 
of the centrifuge with the additional approximation of neglecting radial diffusion of 
radial momentum. The effects of the top and bottom end caps are incorporated 
through Ekman-layer solutions. The results are presented in a form amenable to 
numerical calculations. 

Some sample calculations are presented for the special case of a centrifuge with a 
linear temperature profile on the wall and the top and bottom of the centrifuge at  
the same temperature as the corresponding end of the side wall. 

1. Introduction 
During the past few years, a large number of papers have appeared concerning flow 

in a gas centrifuge. This is no doubt related to the increased interest in gas centrifuges 
as a means of separating uranium isotopes. This work has mainly centred around the 
development of matched asymptotic expansions to represent the flow. Most of this 
work has been on the development of linearized models in which the flow is a small 
perturbation of a uniformly rotating isothermal gas. 

While no attempt will be made here to give a complete survey of the literature, it  
is appropriate to summarize briefly some of the more important recent papers. Bark & 
Bark (1976) presented a uniformly valid asymptotic theory based on vertical boundary 
layers of thickness E i  and E&. These layers are of the Stewartson (1957) type. Brouwers 
(1978), using the same kind of analysis, considered flows induced by temperature 
differences, differential rotation, injection and removal of fluids at the ends and 
induced by temperature gradients on the cylinder walls. Matsuda & Hashimoto 
( 1976) also considered Stewartson-layer flows. Their work included investigating the 
effects of insulated end plates, and insulated side walls. Also, three very good survey 
articles on gas centrifuges have been contributed by Olander (1972), Avery & Davies 
(1973) and Villani (1976). Another very good article that provides a good background 
on the separative processes of the gas centrifuge has been provided by Hoglund, 
Shacter & Von Halle (1979). 

The purpose of this paper is to present a theory of the hydrodynamics of the flow 
in a gas centrifuge. This theory is the outgrowth of work that began in 1961 by a 
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FIGURE 1 .  Gas centrifuge. 

group of scientists led by the late Dr Lars Onsager. This group was formed under the 
auspices of the United States Atomic Energy Commission to develop a fundamental 
understanding of the flow processes in a gas centrifuge. Other members of the original 
group were George Carrier, Harvard University; Sterling Colgate, currently at  the 
Los Alamos Scientific Laboratories; Wendell DeMarcus, University of Kentucky; the 
late Carl Eckart, Scripps Oceanographic Institute; Harold Grad, New York University; 
and Stephen Maslen, Martin Marietta. 

The work presented in this paper is based primarily on an unpublished report by 
Onsager (1965, Approximate solutions of the linearized flow equations) on the ‘pan- 
cake’ approximation and on a report by Carrier & Maslen (1962) and presented in a 
paper by Carrier ( 1  964) on the Ekman layers. The details of this theory were worked 
out and made amenable to numerical calculations by the authors and the late Hermon 
Parker of the University of Virginia. 

In  centrifuges of practical interest, rotation rates are sufficiently high that essen- 
tially all the gas is confined to a narrow annulus near the cylindrical wall (cf. figure 1) .  
Counter-current gas centrifuges in which an axial convective circulation of the process 
gas is induced within the rotor in order to produce large end-to-end separation effects 
are the type of most interest (Von Halle 1977). For the model presented here, it will 
be assumed that this counter-current flow represents a small perturbation to the 
isothermal solid-body rotation. There are many physical mechanisms which can 
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drive these perturbations. These include an axial temperature gradient on the cylin- 
drical wall, different end-cap temperatures, end caps rotating at speeds slightly 
different from that of the centrifuge, mass injection from any of the boundaries, and 
stationary obstacles inserted into the flow. 

I n  $ 2 of this paper, the basic theory is presented along with the derivation of the 
equations. The equations are derived in a very general form and include the effects 
of sources of mass, momentum and energy. These source terms are not retained in 
the subsequent analysis but will be dealt with in a future paper. Section 3 presents a 
general discussion of the problem and its boundary conditions. It is shown that the 
complete solution can be represented by sums of three types of terms, i.e. the 'zero 
eigenfunction ', the end-driven modes, and the lateral modes. The end-driven modes 
are discussed in $ 4  while $ 5  presents the lateral modes and the zero eigenfunction. 
The Ekman boundary layers at the ends of the bowl are discussed in $ 6  and some 
numerical results are presented in $ 7 .  

2. Derivation of the equations for the cylindrical boundary layer 
2.1. The reference solution 

Let ( r ,  19, z )  be cylindrical polar co-ordinates with the origin fixed in the bottom of the 
centrifuge on the axis of rotation, and let ( U ,  V ,  W )  be the corresponding components 
of velocity. The z axis lies along the axis of the right circular cylinder which is rotating 
a t  an angular velocity Q. If the fluid is rotating as a solid body, then the velocity 
components are given by 

U = 0,  V = Qr,  W = 0,  (2.1) 

and the pressure distribution is governed by the hydrostatic equation 

where $3 is the pressure and p̂  is the density. 

cylinder is 

where a is the radius of the cylinder, A = aQ/(2RTo)*, R is the gas constant, and p ,  
is the pressure on the cylinder wall. 

For a perfect gas a t  uniform temperature, To, the pressure distribution in the 

9 = Pwexp{ -A2[1 -(./a)211>, (2.3) 

2.2. Linearized equations 

Let (u', v', w') be perturbations of the reference velocity components ( U ,  V ,  W )  with 
p ' ,  p', and T' the corresponding perturbations of the pressure $3, density p, and tem- 
perature To. For steady axisymmetric motions the first-order perturbation equations 
for conservation of mass, momentum, energy and state are 

I 

-2Qpd -rQ2p' = -pi+- - (ru7)?-- +pu:,+-w~,, P 
4P" 3 r  r2 "'I 3 

1-2 
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(2.7) 

(2.8) 

p' = PRT' +p'RTo, (2.9) 

o = - ~ ~ + - ( r w ~ ) r + ~ w ~ ~ + - ( r u l ) r z ,  lu P 
r 3 3r 

0 = rS22j?ut + k [: (rT:)r + Tiz], 

where k is the thermal conductivity and p is the viscosity and where the bulk viscosity 
has been taken to be 0. Let d be the Laplace operator and use equations (2.2) and (2.4) 
to rewrite equations (2.5) and (2.7) as 

( 2 . 5 ~ )  

(2.7a) 

It is convenient to consider the equations in dimensionless form and we do SO by 
calling 7 = r / a ,  y = z /a ,  Re  = pwQaz/p,  u = u'/Ra, w = w ' / R a ,  w = v'/Slr, po = j?/pw, 
p = p'/pw, p = p' /pw,  8 = T'/To, where pw and pw are the density and pressure at the 
vertical wall of the cylinder. Let A be the Laplace operator in dimensionless co- 
ordinates and the equations (2.4) to (2.9) become 

(7POU)q + 7PoWy = 0, (2.10) 

(2.11) 

(2.12) 

(2.13) 

0 = 4 Re (8 - 1) ( y p , ~ )  + A8, (2.14) 

P = P+Po8, (2.15) 

where S = 1 + Pr A2(y  - 1 ) / 2 y ,  Pr = C,p/k is the Prandtl number and C, is the specific 
heat at constant pressure. 

2.3. Onsager's differential equation 

A boundary-layer analysis based on the assumption that Re 9 1 implies that the 
fluid dynamics in the cylinder may be characterized by examining three principal 
regions: an internal flow region where the axial diffusion terms are negligible and 
Ekman layers a t  the top and bottom of the cylinder where axial diffusion is important. 
The goal of this section is to explain the approximations used to reduce the system of 
equations (2.10) to (2.15) to a single partial differential equation valid in the region 
away from the ends of the cylinder. 
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For A2 B 1, the radial extent of the bowl over which the dynamics is of interest is 
very near the wall. If we set 7 = 1 where it appears algebraically, equations (2.12) 
and (2 .14)  combine to give 

and 
A [ f 3 + 2 ( S - l ) ~ ]  = 0 

A(f3 - 2w) = - 4 Re Spou .  

Using equation (2 .15)  to eliminate p from equation (2.1 1) yields 

(2 .16)  

(2.17) 

(2 .18)  

In  view of the last two equations, we define the quantity q!~ = 8 - 2 0 .  The system is 
described by equations (2.101, (2.131, (2.16), (2.17) and (2 .18) .  In  the region of the 
cylinder away from the ends we retain among the viscous terms only those most 
highly differentiated in the radial direction and introduce the new radial variable 
x = A2( 1 - ?j2) which measures distance from the rotor wall in scale heights (e-folding 
heights) of the ambient density. By including sources terms, we can study the effects 
of sources and sinks of mass, momentum and energy interior to the fluid as well as 
on the boundaries. When this is done, the appropriate approximate model is described 
by the following system of equations: 

e-xw, - 2A2(e-"u), = .A, (2 .19)  

4 = (exp) ,  + ex@, (2.20) 

q ! ~ ~ , =  - R e S e - x u - ( ~ - 2 ~ ) ,  A4 (2.21) 

8A6 
P ,  = x w x x + K  (2.22)  

- 4A4hx,- h,, = F+ 2 ( S  - 1) V ,  (2.23) 

where .A, %, V ,  W ,  9- are sources or sinks of mass, three components of momentum, 
and energy, respectively. The non-dimensionalizing factors for these terms are pw Q, 
pw W a ,  4 A 4 @ / a ,  pw RTo/a, and 4A4kTo/a2, respectively. We also define 

h = 8+2(S-1)0.  

Eliminating p between equations (2 .20)  and (2 .22 ) ,  we get 

(2 .24)  4, = Re (e"w,,), + (ex%''"), + ex%,. 

In  order to allow for mass sources and sinks, we define a stream function in two parts, 
$ and $, by the relations 

e-xu = - h - s 2 $  (2 .25)  

8A6 

1 -  

and 
e-zw = -2A2$,. (2 .26)  
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By substituting these two quantities in equation (2.19), we find qX = A and, imposing 
the boundary conditions u(0, y) = 0 and $(O,  y) = 0, we find that T(0, y) = 0;  hence 

(2.27) 

Thus in the case A = 0 (no mass source), $ becomes the usual stream function. 
Introducing the stream function in equations (2.21) and (2.24) yields 

and 

(2.28) 

Now equations (2.23), (2.28) and (2.29) govern the system. Either q5 or $ may be 
eliminated between the last two of these equations and we choose to eliminate q5 in 
favour of $. This yields 

(2.30) 
Re2 S 

~ ~ x ~ ~ x $ x ~ x x ~ x x x  + m 2  $uu = Fz(x9 Y), 
where 

We follow Onsager and introduce a potential function by the relation $ = - 2A2xX. 
After integrating once with respect to x ,  equation (2.30) becomes 

F(x, y) = GJxm (6 - 2%) dx' - - E4 Jxm 1; Au dx" dx' 

(2.32) 

(2.33) 

and 

The solution of equation (2.32) yields $ and q5, which is sufficient in many cases. 
However, if one wishes to decouple 8 and o, equation (2.23) must also be solved for h. 

A number of differential operators are frequently used and we will simplify the 
notation by making the following definitions 

Lf (4 = [ez(exfxx)xzlxr, L l f  (4 = fx, L 2 f  (5) = exfxx, 

L 3 f  ( x )  = CeXfxxlx, L4f (4 = rexfxxlxx, L 6 f  (4 = ~eX(eXfxx)xxlx. 

Several physical variables are expressed in terms of the master potential x in the 
appendix. 
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3. General discussion of solution 
3.1. Decomposition of solution 

For the remainder of this paper we will assume there are no internal sources and study 
the homogeneous form of Onsager’s equation 

(3.1) [e2(eZxzz),zIzz + B2xua, = 0 

and a particular motion to which it is applicable. 
U7e seek solutions to equation (3.1) of the form 

x(x ,  Y )  = f W  g(y). (3.2) 

Inserting (3.2) into (3.1) leads to two equations : one for f and one for g .  These equations 
are 

and 
[ez(ezfzz)zzl,z + h2f = 0 (3.3) 

B2guu-h2g = 0, (3.4) 

where h2 is the separation constant. There are three distinct and useful classes of 
solutions to these equations corresponding to h real, h purely imaginary, and A = 0. 

Case 1: h purely imaginary. Letting /3 = ih/B, then /3 is real and equation (3.4) 
becomes 

The solution of (3.5) is 
gyy + P29 = 0. (3.5) 

g(y) = A COB /3y + C sin by. 

As will be shown in $ 5  these solutions, called lateral modes, form a complete set of 
functions which can be used to satisfy temperature boundary conditions on the wall 
of the centrifuge. 

Case 2: A = 0. The solution of equation (3.4) with A = 0 is 

g(y) = A + CY. (3.6) 

These solutions, called the zero eigenfunctions, are also useful in satisfying some simple 
boundary conditions on the walls. For example, it will be seen in $5.1 that, if the 
temperature varies linearly on the wall, the h = 0 solutions and not the purely imagi- 
nary h solutions are used. 

Case 3. A real. Letting a = A/B, then equation (3.4) becomes 

guu - 0129 = 0. 

The solution of this equation is 
(3.7) 

g = A e-ay + C e+au. 

It will be shown in $ 4 that these solutions, called end modes, are useful in satisfying 
the boundary conditions at  the top and bottom of the bowl. 

It will be shown in $ 6 that the effect of Ekman layers on the internal flow region 
can be replaced by a boundary condition and that the A-real solutions are useful in 
satisfying these boundary conditions. 
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Since the basic equation (3.1) is linear, we can use superposition of the three basic 
types of solutions to satisfy any general boundary condition. 

3.2. Boundary conditions 

At the rotor wall, the boundary conditions on equation (3.1) require that the radial 
and axial velocities be zero; and #,, which represents a combination of azimuthal 
velocity and temperature gradients along the wall, is an arbitrary specified function. 
Of course, since the no-slip conditions apply, 4, becomes the temperature gradient on 
the wall. 

In  terms of the potential function, these boundary conditions are 

x x ( 0 ,  Y )  = XXX(0, Y )  = 0, 

where $(y) is a prescribed function. As x + 00, we impose the boundary conditions 
u = wx = $x = 0,  which can be expressed in terms of the potential function as 

(3.9) 

For centrifuges with feed along the axis, these conditions are altered. The boundary 
conditions at the top and bottom of the centrifuge require that the internal flow 
solution matches the Ekman-layer solution. This will be discussed in detail in 5 6. 

x,(m, Y )  = X Z ( 0 O 9  Y) = L3x(m, Y) = 0. 

4. End-driven modes 
4.1. Introduction 

In  this section, the end-driven modes will be discussed in detail. In subsection 4.2, 
equation (3.3) and the appropriate boundary conditions will be shown to be self- 
adjoint. The orthogonality conditions for the eigenfunctions are also derived. 

The eigenvalues and eigenfunctions are then computed in the next two sub- 
sections. In subsection 4.3 a direct numerical procedure is presented and in sub- 
section 4.4 an asymptotic procedure is discussed. 

4.2. Xelf-adjoint 

The basic equation for x dependence of the end-driven modes is 

[ e X ( e Z f z s ) x x l r r  + B2a2f = 0. (4.1) 

It is useful to show that this equation together with its boundary conditions is self- 
adjoint and to derive the orthogonality relations between the eigenfunctions. The 
appropriate boundary conditions are 

f z (0 )  = fZZ(0) = L5f (0) = 0, 

f(a) =fJW = L 3 f ( W )  = 0. (4.2) 

Let f, and f, be two solutions of (4.1) subject to the appropriate boundary conditions 
corresponding to different eigenvalues Ba, and Ba, respectively. By assumption, 

[e"(ezflzZ)xxlsx +B24fi  = 0. 
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Multiplying by f 2  and integrating from 0 to co yields 

9 

Integrating the first term by parts three times and using the boundary conditions 
yields 

Repeating this on an equation for f 2  multiplied by fi yields 

(e3cfirz)* ( e ~ f z ~ z ) , d ~ + ~ 2 c r l ~ o w f l f 2 ~ x  = 0. 

Subtracting these two equations, we get 

B2(a: - a:) lom fl f z d x  = 0. (4.3) 

These results show that the differential equation (4.1) with the boundary conditions 
(4.2) is self-adjoint and the eigenfunctions are orthogonal as shown by equation (4.3). 

Since the differential equation (4.1) is self-adjoint we can express the eigenvalues 
in terms of a minimum principle (Courant & Hilbert 1953). 

Let 

and 

Then 
I 

aB = min- J’ 

where the minimum is over all functions satisfying the boundary conditions (4.2). 

4.3. Direct numericai calcula~ion 

Let t = x-log (aB) and substitute into equation (4.1). The process yields 

[et(etftt)ttltt +f = 0. (4.4) 

Using the method of Frobenius, Onsager solved this equation and showed that only 
three of its six solutions satisfy the boundary conditions a t  x --f co. These are 
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Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

t = -log (aB) 
- 0.8800138 
- 2.714864 
- 3.792559 
- 4.576250 
- 5.194949 
- 5.706744 
- 6.143383 
- 6.52441 6 
- 6.860389 
- 7.182411 

TABLE 1. First 1, eigenvL..ms for the end-driven modes. 

where 
6n(n- I)  + 1 

c(n) = a(n- 1) + 
n(n- I )  (2n- 1) 

and 
~ ( 1 )  = 1.96150018 ... 

(a( 1) = 3 - 3y + log 2, where y is Euler's number). Thus a general solution of equation 
(4.4) which satisfies the boundary conditions a t  x = 00 can be written as 

f(t) = A 1 f 1 ( t ) + A 2 f , ( t ) + A 3 f 3 ( t ) '  

At x = 0, t = - log (aB) the boundary conditions are expressed 

fit f a t  (;: f 2 t t  f 3 4 3  = o  at t =  -log(aB). (4.5) 

This set of homogeneous equations has solutions only if the determinant of the co- 
efficient matrix is zero, This occurs only at  discrete values of log(&). When this 
happens, equation (4.5) determines only the ratio of A,, A, and A,. Thus 

'Sf1 '6fZ ' S f 3  

f = Alf i+A2f2+ASf3  (4.6) 

is arbitrary to a multiplicative constant. The values of t  for which this happens will 
be referred to as eigenvalues and the corresponding f's as eigenfunctions. The results 
of these calculations are presented in table 1 and figures 2-5. In  table 1 are listed the 
first ten values of log (uB). Figure 2 shows the first four eigenfunctions, figures 3, 4 
and 5 show the first, second and L, derivatives of these eigenfunctions. 

Letting t, and f, be corresponding eigenvalue-eigenfunction pairs (modes) arranged 
so that t, are in increasing order and recalling that a = e- tn/B,  we can write the general 
solution for the end-driven modes as 

where yo is the normalized length of the rotor. 
Physically, l /a ,  represents the decay length for the nth mode. That is, if D, = 1 

and all other D's and E's are zero, then the nth mode will be reduced in amplitude by 
a factor of l /e  in a distance l/an. 
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FIQURE 3. First derivative of the first four end-driven eigenfunctions: 
-, mode 1 ;  -- -, mode 2 ;  0, mode 3;  *, mode 4. 
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FIGURE 5 .  L, derivative of the first four end-driven eigenfunctions: 
-,mode 1;  ---,mode 2; 0,  mode 3;  *, mode 4. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

%/a” 
1 
0.159637 
0.054337 
0.024817 
0.013367 
0.00801 3 
0.005178 
0.00354 
0.00253 
0.00183 

TABLE 2. Ratio of decay lengths for the first 10 eigenfunctions. 

It is useful to look at the ratios al/a,. These ratios give the relative decay lengths 
of the nth mode to the first mode. As can be seen from table 2, the decay lengths drop 
off quite rapidly compared to the first mode. 

4.4. Asymptotic eigenfunctions and eigenvalues 

The end-driven eigen functions become increasingly difficult t o  calculate for larger 
eigenvalues using the methods discussed in the previous section. This is due to the 
fact that basic solutions used become increasingly similar so that the eigenfunctions 
must be calculated as small differences between increasingly large numbers. If more 
eigenfunctions are needed, asymptotic methods must be used. The purpose of this 
section is to describe the appropriate asymptotic calculation. 

The fundamental equation to be solved is 

Letting 

we will look for a solution of the form 

where 
(4.10) 

(4.11) 

Substituting (4.10) into (4.8) and performing the indicated operations and equating 
orders of B leads to the following equations: 

Order eo 

Order el 
qA6 + e - b  = 0 ;  

15qh4q,” + 6qiq;5 + 6qh5 = 0.  

q; = ( - 114 e+, 

(4.12) 

(4.13) 

(4.14) 
From equation (4.12) 

where the six roots of ( -  1) are 

3(43+i), i, 3 ( - 4 3 + i ) ,  3 ( - 4 3 - i ) ,  -i, & / 3 - i ) .  
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Solving equation (4.13) for q; gives 

q ; =  - ( l+Tz) .  15 q: 

Using (4.14) to evaluate q;, qi yields 

or 
X q l =  -- 
6' 

Thus, to order cz, the asymptotic eigenfunction becomes 

fasy N e+{A, cos (3s-1 e-$2 + 6 )  

fasy - e-i..(A, cos (3 e+(a-z) + 6 )  

+ B, exp [ - veBa-"] cos (8 eBa-2) + p )  
+ C, exp [veBa-")] cos (8 e%a-@ + y)} .  

The appropriate boundary conditions that this solution must satisfy are 

f ' (0)  = 0, f (m)  = 0, 

f"(0) = 0, f'(co) = 0, 

L5f (0 )  = 0, L3f(03) = 0. 

(4.16) 

(4.17) 

Because of the exponential dependence of the second term, we will assume that it is 
negligible except near infinity. The boundary conditions at x = 0 are used to determine 
the remaining parameters. Note that, since the boundary conditions are homogeneous, 
one of the parameters is arbitrary. Thus we choose A,  = 1.  

Let 

Then 
y = s- l (e-b-  1) .  

fasy = e-i2{cos [3y + 6 + 3 c 1 ]  + C, eye-' eyv cos [Qy + (y  + 3s-l)l). (4.18) 

Substituting equation (4.18) into the boundary conditions at  x = 0 yields after much 
algebra 

6 =  - 2  .n, 

n.n 7.n 
y = y+-+o 24 

C, = (- 1 +&) ey le .  

($) , 
€ - I = -  n + L + - + + . .  , 

7T 3 ( 1 2  2+n 
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Direct Asymptotic 
n calculation calculation 

5 5.19495 5.21240 
6 5.70674 5.71899 
7 6-14338 6.15246 
8 6.524416 6.53125 
9 6.860388 6.867589 

TABLE 3. Comparison of eigenvalues. 

n 

0 
1 
2 
3 
4 
5 
6 
7 
8 

xd 

W 
5-22 
3.75 
2.79 
2.07 
1.49 
1 a 0 0  
0.590 
0.210 

2 0  

7.60 
5.05 
3.69 
2.75 
2.05 
1.48 
1.02 
0.580 
0,230 

TABLE 4. Comparison of zeros for the ninth eigenfunction calculated 
directly and from the asymptotic eigenfunction. 

Table 3 compares the results of the asymptotic analysis with the values for the 
eigenvalue calculated in the previous section. The values in the table represent the 
log(aB), where aB is defined in equation (4.8). It should be pointed out that this 
eigenfunction does not satisfy the boundary conditions a t  00. Near x = co, the term 
which was neglected (second term of equation (4.16)) must be included. However, 
since in gas centrifuges of practical importance most of the gas is confined to a very 
narrow region near the wall, this term is of no real significance. 

To compare the asymptotic eigenfunctions with the direct calculation, it is useful 
first to compare the zeros of the two calculations. Table 4 compares the zeros for the 
ninth eigenfunction calculated directly (xd) with the zeros from the asymptotic 
eigenfunctions (x,) given by equation (4.18). 

5. Lateral modes 
5.1. Zero eigenfunction 

We consider equation (3. I )  for the case h = 0 and call the solution the zero eigenfunc- 
tion. Parker (1973, The with-feed pancake model of internal flow in a gas centrifuge, 
unpublished manuscript) was the first to make use of this solution, which we write 
with this notation 
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Since all physical quantities are related to derivatives of the master potential, we 
choose to set b, = 0. For the case of a centrifuge with no feed being introduced at  the 
axis, xo(x, y) satisfies the boundary condition at x = co given by equation (3 .9 )  when 
co = b, = c, = Po = P, = 0. The solution xo(x, y) also satisfies the velocity boundary 
conditions at x = 0 given by equation (3.8) and the temperature boundary conditions 
gives 

f9 (0). (5 .2 )  
Re 

L5x0(0,!/) = 4(b5+c6y) = m o  v 

Therefore, if the temperature of the rotor wall is a quadratic or linear function of y, 
xo(x, y) satisfies the boundary conditions exactly. Since pow = 4A4xsz we find from 
the zero eigenfunction that 

w = - 8A4b,[l - (1  + 2x) e-z], 

which corresponds to the idealized flow model obtained by Parker & Kelly (1967, 
The universal high-speed flow pattern : centrifuge performance based on the rod-like 
solution, unpublished manuscript) and independently and more recently by Lotz 
(1973).  

5.2. Aeries solutions 

For the case of h purely imaginary as discussed in case 1 of Q 3 we see that the basic 
equation for laterally driven modes is 

Cez(ezfzz)zslz2 - B W  = 0. 

Let s = x-log (PB) and substitute in equation (5 .3 )  to get 

(5 .3 )  

[eS(esfss)ss1ss -f = 0. (5.4) 

As in $ 4 ,  the method of Frobenius yields six solutions to the differential equation. 
For completeness we will list these solutions here. The coefficients involve the digamma 
and polygamma functions which we will tabulate first: 

r(g) = .Jn, 

-$(-&) = y+log4, 

$ ( n ) - $ ( n - l )  = l /n ,  

- $(O)  = y (Euler's constant), 

$' (O)  = n2/6, 

$'(n - 1)  - $'(n) = l/n2, $-'(a) = 0, 

- $"(O) = 2g(3) = 2.4041 13806, 

$"(n) - $"(n- I )  = 2/n3, $"(cQ) = 0. 
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a(n) = 2$(2n) + $(n - 1 )  +log 2, 

al(n) = 2 f ( 2 n )  + #$'(n- 1)'  

a2(n) = 2$"(2n) + &Y(n - 1 ) .  

For simplification, 
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These recurrence formulae are as used by Onsager, but one might note that most 
references such as Erdklyi (1953)  use the initial value $( 1)  = - y. We will also define 

bk = [ 2 k r ( 2 k +  1 )  r (k)]- ' ,  

dk = [2k+tr (2k  + 2 )  r(k + 
Onsager's solutions can now be written as 

m 

Y1(s) = z bke-2ks, 
k= 1 

In terms of the variable x, we use the notation 

Sjn(X)  E 2 q s )  = qx-log(Bpn)] ,  

where j = 1 , 2 ,  . .., 6 and n = 1 , 2 , 3 ,  . ..; therefore the functions Sj,(x) satisfy the 
differential equation 

LS,,(X) = /3;B2Sjn(x). 

5.3 .  Boundary conditions 

These modes can be used to satisfy arbitrary boundary conditions a t  the rotor wall, 
and/or at  some interior radius, X,, in the case of feed from the axis or in the case of a 
concentric inner cylinder. The axial dependence can be expressed by trigonometric 
functions as discussed in $ 3  and, for convenience, we make the approximation 
p = 2nlr/y,, which will be compensated for by the Ekman-layer matching discussed 
in $ 6. Therefore, the general solution for the laterally driven modes is given by 

a 6  

n = l  j=1 
xL = z Sjn(x) [ aj,cos ('7) - +bin sin (?)I. (5 .5 )  

In order to satisfy the boundary conditions expressed in equation ( 3 . 9 ) ,  we see that 
the coefficients of S3n, S4n, and S6, must be identically zero for all n. 



18 H .  C. Wood and J .  B. Morton 

FIUURE 6. Axial mass flux (g m--2 5-1) as a function of scale heights at the axial 
location &yo. - , 400 m s-l; - - - -, 500 m s-l; - * -, 700 m s-l. 

The solution of the non-homogeneous equation (2.44) can be expressed in the form 

x = x c + x p ,  

where xc is the complementary solution and xp is the particular solution. Combining 
the results of equations (4.7), (5.1) and ( 5 4 ,  we see that the most general form of 
the complementary solution is 

X c  = XO + XL + X E .  (5.6) 

The remaining coefficients of xo and xL are determined by the boundary conditions 
at the rotor wall. The terms in xc which are constant in z are treated as the constant 
term of a Fourier series, and the terms in xc which are linear in z are used to subtract 
the linear dependence on z from the boundary to be decomposed by Fourier de- 
composition. First we treat the boundary conditions at  the rotor wall (x = 0). 

(1)  g(0,y) = 0 [or, equivalently, u(0 ,y )  = 01: Since $r = -2A2xZ, this condition 
implies that 

6 

and 
6 

j=1 
b,,S;,(O) = 0 for every n. 
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FIGURE 7. Axial mass flux (g m--p s-l) as a function of scale heights at the axial 
location +yo. - , 400 m s-l; - - - -, 500 m 8-l; - * -, 700 m s-l. 

(2) w(0, y) = 0:  Since pow = 4A4xZz, this condition implies that  

6 

j-1 
I: aj,Sl;,(o) = 0 

and 
6 

i=l 
bj,S&(0) = 0 €or every n. 

(5.9) 

(5.10) 

( 3 )  &(O, y) = $&): For the no internal source case, 9, = (32A1°/Re) L5x, and this 
condition implies that 

where the overbar signifies a prescribed boundary function. Solving for c5, we find 
that 

Similarly we have 

(5.11) 
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FIGURE 8. Streamlines for the 400 m s-l case. 

which can be solved for b, to give 

Also, we have 

(5.12) 

(5.13) 
6 Re 2 2 7 ~ 1 0  

ajnL,Sjn(0) = -- 
j=1 Yo 

and 

for every n. As stated earlier, ain = bin = 0 for j = 3 , 4 , 6  and n = 1 , 2 , 3 ,  . . . in order to 
satisfy the interior boundary condition given by equation (3.9). However, we write 
the equations in a general form so that the method is clear for prescribing other 
boundary conditions. In  any case, a sequence of linear algebraic equations must be 
solved to provide as many coefficients as necessary to fit the significant features of 
the boundary data. 
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6. Ekman boundary layers 
6. I .  The approximating equations 

With the centrifuge rotating about its vertical axis, boundary layers will occur on 
horizontal flat surfaces. These boundary layers are analogous to those first studied by 
Ekman (1905) in describing ocean flows. I n  this situation the viscous forces are 
balanced by the Coriolis forces and making use of this fact makes the problem quite 
tractable. We will follow the analysis first presented by Carrier & Maslen (1962) and 
later by Carrier (1 964) which allows the details of the flow in the Ekman layer to be 
replaced by a boundary condition to be imposed on the flow outside of the Ekman layer. 

While this paper was being considered by the referees, a new work by Soubbaramayer 
(1979) was brought to our attention. This is a very well-written article and captures 
some of the ideas of Onsager as described in our present work. However, Soubbara- 
mayer, as apparently most other authors of papers on this topic, has not been aware 
of the work of Carrier & Maslen, which has several advantages over the approach taken 
by others. First, this treatment allows a much more general set of boundary conditions 
to be imposed on the primitive variables. For example, the Ekman solution presented 
by Soubbaramayer satisfies only homogeneous end conditions for the three velocity 
components, which precludes the cases in which a countercurrent flow is induced by a 



22 H .  G .  Wood and J .  B.  Morton 

Scale heights 

FIUURE 10. Streamlines for the 700 m s-l case. 

differentially rotating end wall or a mass flow through the end wall. In particular, the 
Carrier & Maslen treatment allows the exchange of mass between the inner and outer 
regions without the complication of using the so-called ‘Ekman extension to the E* 
layer’. Secondly, the treatment of Carrier & Maslen avoids the complications of 
matching inner and outer solutions since their analysis yields a simple boundary 
condition to be satisfied by the flow in the region outside of the Ekman layer. 

We begin the analysis with the dimensionless equations (2.10) through (2.15) and 
introduce a stream function B by the relations 

I u = Uu, 

w = - q-l(?/qq - 2A27Z. (6.1) 

We use equations (2.13) and (2.15) to eliminatep and p from equation (2.11) and we 
have 

Using equation (6.1) and defining the operator H ( B )  = AB - Z/rj2,  the governing system 
of equations (2.12), (2.14) and (6.2) can be written as 

(6.3) 
1 

2P,q/ = j& [WP) -wlrl t  
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FIGURE 11.. Temperature perturbation (Kelvin) as a function of scale heights at  
the axial location $yo. - , 400ms-l; - - - -  , 500 m s-l; - -, 700 m s-l. 

Re 7p0(B, - 2w,) = P ( E )  + 4A2 

( 6 . 5 )  
16A4 - 

- 4A4[72ETT + 3 7 q  + E] - - q2 =,,a 
3 

6 .2 .  Solution of the approximate equations 

We anticipate that the characterizing scale of w ,  B and B in the y co-ordinate is small 
compared to that in the 7 co-ordinate. We define e = l /Re and seek solutions to the 
preceding equations of the form 
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FIGURE 12. Isotherms for the 400 m s-l case. 

where the scales in y of the terms with subscript zero are of order unity and the scales in 
y of the terms with subscripts 1 and 2 are of order Je. Furthermore, the terms with 
subscript 1 must decay like e-f; = e-VJqE and the terms with subscript 2 must decay like 
e-5 = e-fvo-g)fqe. Substituting equations (6.6) through (6.8) into equations (6.2) through 
(6.4), we find that the equations pertinent to the region y = O(Je) are 

- 
7 P d 4 ,  - 2%) = fi l5555' 

The first two equations can be combined to provide 

(6.11) 

[el + 2 ( s  - 1) 7 2 ~ ~ 1 ~ ~  = 0 (6.12) 

[el - 2~1155 = - 4[1+ (X - 1) 7'1 q-l~oE15. (6.13) 

We define the quantities 6 = [l + (5 - 1)  712]4 and c = 2p06 and recall that Q, = r3 - 2w. 

and 
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FIGURE 13. Isotherms for the 500 m s-l case. 

Scale heights 

The solutions with the required exponential decay can be written 

8, = - G * [ ~ S B , ( ~ )  e+u)'t + ( - i)+ B,(V) e - ~ i u ) ' ~ ] ,  (6.14) 

(6.15) 

(6.16) 

where B, and B, are functions of 7 to be determined from the boundary conditions 
and C is a constant. 

V [ B , ( ~ )  e+u)'s + B 2 ( 7) e-7)"], 
h = -2n;l+2(9-1)n%, = c, 

6.3. Boundary conditions 

We want to satisfy boundary conditions of the form 

w = G ,  8 = 8 ,  8,= V and 8 = k, (6.17) 

where W, 8, U and k represent arbitrarily prescribed functions of 7 a t  both y = 0 and 
y = yo. Using the solution as given by equations (6.14) and (6.15) and substituting 
into (6.6), (6.7) and (6.8) the boundary conditions yield 

$ w 7  0) = 4*(% 0) - 2r-'W,(r) + B2(?)1, (6.18) 

i+B,(Y) + ( --i)*B&) = ( V W  P o ( %  0) -k(% O)l ,  (6.19) 

iBl(7) -i&(v) + So,(% 0) = 0(r7 0) (6.20) 

- -  
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Scale heights 

FIGURE 14. Isotherms for the 700 m 9-1 case. 

at y = 0. Equation (6.19) implies that Eo(O, 7) - k ( 0 , ~ )  is of order (aRe)-* times B, 
and since Eoy cannot appreciably exceed 8, (because its y scale is of order unity) Eoz/ 
provides a negligible contribution to equation (6.20). Therefore B, = B, - ig and, 
upon eliminating B, and B, between equations (6.18) and (6.19), we have a single 
boundary condition 

(PoSRe))[Bo('I,0)-k('I, 0)l = $[r$O('I' O)--iQ'I? 0 ) 1 + 7 .  ml, 0) (6.21) 

An identical analysis can be carried out in the vicinity of y -yo to produce the equation 

(6.22) 'I m' Yo) - (PosRe)* [So(% Yo) - k(% Yo11 = 3 [$o(% Yo) - $(% Yo)] + 2. 

As Carrier & Maslen demonstrated, we have boundary conditions which can be applied 
to the interior flow field without a detailed discussion of the accompanying Ekman 
layers. 

6.4. Connexion with the Onsager equation 

We will make consistent approximations for equations (6.21) and (6.22) to be appro- 
priate to the case that the interior flow is described by Onsager's model. We make the 
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change of variables from 7 to x per equation (2.16) and set 7 = 1 wherever it appears 
algebraically. This implies 8 = AS* and po = e-x. Also, we replace So, the stream func- 
tion of the interior flow field, by - $/po, where $ is the stream function appropriate 
to the Onsager equations and defined by equations (2.25) and (2.26). For the case 
that mass is removed through the boundary, we recall that $ ( O ,  y) = 0 and define 

;22s,2 
h O ( x )  - pOw(z’, 0) dx‘ = - 27r$(~, 0 )  

and 
7r 

hty,(z) = p ~ o z p o w ( ~ ’ , y o )  dx‘ = - 2n$r(x, yo). 

With these observations, equations (6.21) and (6.22) are replaced by 

= e-*”[$(x, 0 )  - $(x, O ) ]  + 2 S & e b x u ( x ,  0 )  (6.23) 

and 
1 

4 S t R e t  $ ( x , ~ ~ ) + ~ h ~ ~ ( x ) ]  = e-*”[$(x,~o)-$(x,~o)]+2S*e-*x~(x,~O). (6.24) 

We now substitute for $ and $ in terms of the master potential in equation (5.6) 

[ 
and after considerable algebra express equations (6.23) and (6.24) as 

where 

n= 1 n=l 

m m 

2 Re Sa, 
p,(x) = SS9 Re* A2(QXjA (x))’ - A2 fn(x), 

(6.25) 

(6.26) 

and a, and f,(x) are the eigenvalue-eigenfunction pairs discussed in 0 4. The functions 
R, and Rtyo are determined from xo, xL and the boundary conditions and we have 

[W(x, 0 )  - 4A4 exx&.(z, O ) ]  - 2A2x$(x,  0 )  +- h0(x )  
27r I1 

- 
- $x@, Yo) + 2S4&(x9 Yo), 

where x* = xo + xL and the functions W, uand $ are prescribed. 
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If the infinite series are truncated after N terms, equations (6.25) and (6.26) may 
be evaluated at a number of values of x and the coefficients D, and E,, n = I, 2, . . . , N ,  
can then be determined by linear least squares. When we recall that x = xo + xL + xE, 
we see that this procedure provides a x that meets all of the required boundary 
conditions even though the individual terms xo, xL, and xE do not necessarily. How- 
ever, this procedure does have significant practical advantages. The end eigenfunc- 
tions satisfy a homogeneous problem and are free of the physical parameters, which 
means they can be computed and saved once and for all. The lateral eigenfunctions 
can be computed for classes of problems which have the same value ofp,B and then 
applied to problems with a variety of boundary conditions. For example, in order to 
compare two centrifuges with the same value of p, B but different rotor-wall and/or 
end-wall temperature profiles, the lateral eigenfunctions would need to be computed 
only once. 

7. Results 
7.1. Description of the calculations 

The case considered is for a centrifuge containing UF, with a linear wall temperature 
and with the temperature on the end caps constant and equal to the corresponding 
temperature a t  the cylinder wall. The geometry and operating conditions are a 
diameter of 18.29 cm, a length of 335.3 cm, average temperature To = 300 K, and 
wall speeds of 400, 500, and 700 m/s as considered by May (1977). We will use a wall 
pressure of 13-3 kPa as considered by Durivault & Louvet (1976). The difference in 
temperature from end to end is 1 K, and for orientation the hotter end is at y = 0. 
If one wishes to consider different temperature gradients, simply multiply the results 
by the appropriate constant since the partial differential equation is linear. 

The three cases we present are for peripheral speeds of 400, 500 and 700 metres per 
second. For this choice of speeds one should keep the following point in mind regarding 
the independent variable whose units are scale heights. The distance corresponding 
to one scale height in the 700 metre per second case is approximately fr of a scale height 
in the 500 m s-l case and approximately Q of a scale height in the 400 m s-l case. 

All of the figures display results plotted against radial position as given in scale 
heights. Table 5 compares the normalized radius, 7, at x = 8 scale heights with x at 
7 = 0.877 for the three speeds. 

Based on the unperturbed density field, we can compute the fraction of mass con- 
tained in the first n scale heights from the cylinder wall and the mean free path at  n 
scale heights. This information is displayed in table 6. Likewise we can compute the 
length of the scale heights as a function of distance from the cylinder wall. This 
information is displayed in table 7. From the tables we see that, in the 700 m s-l 
case, the mean free path at  8 scale heights is about 4 the local scale height. These 
tables are intended to convey a sense of appreciation of the nature of the atmosphere 
contained in the centrifuge and to aid in interpreting the figures. 

7.2. Discussion of results 

Figures 6 and 7 show the axial mass flux as a function of scale heights at the axial 
locations $yo and *yo, respectively. Since pow is symmetric in the axial co-ordinate, 
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A2 4(x = 8) ~ ( 4  = 0.877) 

11.29 
17.64 
34.57 

0.540 2.6 
0.739 4.1 
0.877 8.0 

TABLE 5 .  Comparison of scale heights with radial position for different speeds. 

Number of Mass 
scale heights fraction Mean free path (cm) 

0.6321 
0.8647 
0.9502 
0.981 7 
0.9933 
0,9975 
0.9991 
0.9997 

3.86 x lopb 
1.05 x 10-4 
2.85 x 10-4 
7.76 x 10-4 
2.11 x 10-3 
5.73 x 10-3 
1.56 x 
4.24 x 10-2 

TABLE 6. Mass fraction and mean-free-path relationship 
to scale height for p ,  = 13.3 kPa. 

Scale Length (cm) 
height (--A__-- 7 

number A' = 11.29 A' ,= 17.64 A Z  = 34.57 

0.4144 
0.4351 
0-4592 
0.4878 
0.5226 
0.5661 
0.6226 
0.7005 

0.2630 
0.2710 
0.2798 
0.2896 
0.3004 
0.3125 
0.3263 
0.3420 

0.1332 
0.1352 
0.1373 
0.1395 
0.1418 
0.1442 
0,1468 
0,1495 

TABLE 7. Length of the scale heights related to  rotation rate. 

the flux at %yo will be the same as at &. We note that the cross-over point moves 
away from the cylinder wall as the speed of rotation is increased. 

Figures 8, 9, and I 0  are the streamlines for the three cases and approximately ten 
per cent of the mass is contained between consecutive contours. One might recall the 
point made earlier that, since the length of a scale height decreases with increased 
rotation rate, the physical volume containing the gas is more nearly the same for the 
three cases than appears from the plots. 

Figure 11 shows the radial dependence of the temperature perturbation as a function 
of scale heights a t  the axial location $yo. The temperature is antisymmetric about the 
midplane so that the result at  $yo is the negative of that at  .tryO. The plots show that 
the perturbation increases with speed. Figures 12, 13, and 14 are the isotherms for 
the three cases. 
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Appendix. Relation of the dependent variable to the master potential 

~ = -2A2xX, (A 1)  

1 
d d x '  = 2A2xZy - =/ox d d x ' ,  

32A1° 
R e  d, = - L,x + ex%y + 
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